Abstract:Agentic recommender systems leverage Large Language Models (LLMs) to model complex user behaviors and support personalized decision-making. However, existing methods primarily model preference changes based on explicit user-item interactions, which are sparse, noisy, and unable to reflect the real-time, mutual influences among users and items. To address these limitations, we propose RecNet, a self-evolving preference propagation framework that proactively propagates real-time preference updates across related users and items. RecNet consists of two complementary phases. In the forward phase, the centralized preference routing mechanism leverages router agents to integrate preference updates and dynamically propagate them to the most relevant agents. To ensure accurate and personalized integration of propagated preferences, we further introduce a personalized preference reception mechanism, which combines a message buffer for temporary caching and an optimizable, rule-based filter memory to guide selective preference assimilation based on past experience and interests. In the backward phase, the feedback-driven propagation optimization mechanism simulates a multi-agent reinforcement learning framework, using LLMs for credit assignment, gradient analysis, and module-level optimization, enabling continuous self-evolution of propagation strategies. Extensive experiments on various scenarios demonstrate the effectiveness of RecNet in modeling preference propagation for recommender systems.
Abstract:VLA models have shown promising potential in embodied navigation by unifying perception and planning while inheriting the strong generalization abilities of large VLMs. However, most existing VLA models rely on reactive mappings directly from observations to actions, lacking the explicit reasoning capabilities and persistent memory required for complex, long-horizon navigation tasks. To address these challenges, we propose VLingNav, a VLA model for embodied navigation grounded in linguistic-driven cognition. First, inspired by the dual-process theory of human cognition, we introduce an adaptive chain-of-thought mechanism, which dynamically triggers explicit reasoning only when necessary, enabling the agent to fluidly switch between fast, intuitive execution and slow, deliberate planning. Second, to handle long-horizon spatial dependencies, we develop a visual-assisted linguistic memory module that constructs a persistent, cross-modal semantic memory, enabling the agent to recall past observations to prevent repetitive exploration and infer movement trends for dynamic environments. For the training recipe, we construct Nav-AdaCoT-2.9M, the largest embodied navigation dataset with reasoning annotations to date, enriched with adaptive CoT annotations that induce a reasoning paradigm capable of adjusting both when to think and what to think about. Moreover, we incorporate an online expert-guided reinforcement learning stage, enabling the model to surpass pure imitation learning and to acquire more robust, self-explored navigation behaviors. Extensive experiments demonstrate that VLingNav achieves state-of-the-art performance across a wide range of embodied navigation benchmarks. Notably, VLingNav transfers to real-world robotic platforms in a zero-shot manner, executing various navigation tasks and demonstrating strong cross-domain and cross-task generalization.
Abstract:Diffusion-based large language models (dLLMs) have emerged as a promising paradigm, utilizing simultaneous denoising to enable global planning and iterative refinement. While these capabilities are particularly advantageous for long-context generation, deploying such models faces a prohibitive memory capacity barrier stemming from severe system inefficiencies. We identify that existing inference systems are ill-suited for this paradigm: unlike autoregressive models constrained by the cumulative KV-cache, dLLMs are bottlenecked by transient activations recomputed at every step. Furthermore, general-purpose memory reuse mechanisms lack the global visibility to adapt to dLLMs' dynamic memory peaks, which toggle between logits and FFNs. To address these mismatches, we propose Mosaic, a memory-efficient inference system that shifts from local, static management to a global, dynamic paradigm. Mosaic integrates a mask-only logits kernel to eliminate redundancy, a lazy chunking optimizer driven by an online heuristic search to adaptively mitigate dynamic peaks, and a global memory manager to resolve fragmentation via virtual addressing. Extensive evaluations demonstrate that Mosaic achieves an average 2.71$\times$ reduction in the memory peak-to-average ratio and increases the maximum inference sequence length supportable on identical hardware by 15.89-32.98$\times$. This scalability is achieved without compromising accuracy and speed, and in fact reducing latency by 4.12%-23.26%.
Abstract:This paper integrates the emerging ultra-massive multiple-input multiple-output (UM-MIMO) technique with orthogonal chirp division multiplexing (OCDM) waveform to tackle the challenging near-field integrated sensing and communication (ISAC) problem. Specifically, we conceive a comprehensive ISAC architecture, where an UM-MIMO base station adopts OCDM waveform for communications and a co-located sensing receiver adopts the frequency-modulated continuous wave (FMCW) detection principle to simplify the associated hardware. For sensing tasks, several OCDM subcarriers, namely, dedicated sensing subcarriers (DSSs), are each transmitted through a dedicated sensing antenna (DSA) within the transmit antenna array. By judiciously designing the DSS selection scheme and optimizing receiver parameters, the FMCW-based sensing receiver can decouple the echo signals from different DSAs with significantly reduced hardware complexity. This setup enables the estimation of ranges and velocities of near-field targets in an antenna-pairwise manner. Moreover, by leveraging the spatial diversity of UM-MIMO, we introduce the concept of virtual bistatic sensing (VIBS), which incorporates the estimates from multiple antenna pairs to achieve high-accuracy target positioning and three-dimensional velocity measurement. The VIBS paradigm is immune to hostile channel environments characterized by spatial non-stationarity and uncorrelated multipath environment. Furthermore, the channel estimation of UM-MIMO OCDM systems enhanced by the sensing results is investigated. Simulation results demonstrate that the proposed ISAC scheme enhances sensing accuracy, and also benefits communication performance.
Abstract:This paper introduces a sensing-centric joint communication and millimeter-wave radar paradigm to facilitate collaboration among intelligent vehicles. We first propose a chirp waveform-based delay-Doppler quadrature amplitude modulation (DD-QAM) that modulates data across delay, Doppler, and amplitude dimensions. Building upon this modulation scheme, we derive its achievable rate to quantify the communication performance. We then introduce an extended Kalman filter-based scheme for four-dimensional (4D) parameter estimation in dynamic environments, enabling the active vehicles to accurately estimate orientation and tangential-velocity beyond traditional 4D radar systems. Furthermore, in terms of communication, we propose a dual-compensation-based demodulation and tracking scheme that allows the passive vehicles to effectively demodulate data without compromising their sensing functions. Simulation results underscore the feasibility and superior performance of our proposed methods, marking a significant advancement in the field of autonomous vehicles. Simulation codes are provided to reproduce the results in this paper: \href{https://github.com/LiZhuoRan0/2026-IEEE-TWC-ChirpDelayDopplerModulationISAC}{https://github.com/LiZhuoRan0}.
Abstract:Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.
Abstract:Conversion rate (CVR) prediction is a core component of online advertising systems, where the attribution mechanisms-rules for allocating conversion credit across user touchpoints-fundamentally determine label generation and model optimization. While many industrial platforms support diverse attribution mechanisms (e.g., First-Click, Last-Click, Linear, and Data-Driven Multi-Touch Attribution), conventional approaches restrict model training to labels from a single production-critical attribution mechanism, discarding complementary signals in alternative attribution perspectives. To address this limitation, we propose a novel Multi-Attribution Learning (MAL) framework for CVR prediction that integrates signals from multiple attribution perspectives to better capture the underlying patterns driving user conversions. Specifically, MAL is a joint learning framework consisting of two core components: the Attribution Knowledge Aggregator (AKA) and the Primary Target Predictor (PTP). AKA is implemented as a multi-task learner that integrates knowledge extracted from diverse attribution labels. PTP, in contrast, focuses on the task of generating well-calibrated conversion probabilities that align with the system-optimized attribution metric (e.g., CVR under the Last-Click attribution), ensuring direct compatibility with industrial deployment requirements. Additionally, we propose CAT, a novel training strategy that leverages the Cartesian product of all attribution label combinations to generate enriched supervision signals. This design substantially enhances the performance of the attribution knowledge aggregator. Empirical evaluations demonstrate the superiority of MAL over single-attribution learning baselines, achieving +0.51% GAUC improvement on offline metrics. Online experiments demonstrate that MAL achieved a +2.6% increase in ROI (Return on Investment).
Abstract:Spoken Language Models (SLMs), which extend Large Language Models (LLMs) to perceive speech inputs, have gained increasing attention for their potential to advance speech understanding tasks. However, despite recent progress, studies show that SLMs often struggle to generalize across datasets, even for trained languages and tasks, raising concerns about whether they process speech in a text-like manner as intended. A key challenge underlying this limitation is the modality gap between speech and text representations. The high variability in speech embeddings may allow SLMs to achieve strong in-domain performance by exploiting unintended speech variations, ultimately hindering generalization. To mitigate this modality gap, we introduce Optimal Transport Regularization (OTReg), a method that formulates speech-text alignment as an optimal transport problem and derives a regularization loss to improve SLM training. In each training iteration, OTReg first establishes a structured correspondence between speech and transcript embeddings by determining the optimal transport plan, then incorporates the regularization loss based on this transport plan to optimize SLMs in generating speech embeddings that align more effectively with transcript embeddings. OTReg is lightweight, requiring no additional labels or learnable parameters, and integrates seamlessly into existing SLM training procedures. Extensive multilingual ASR experiments demonstrate that OTReg enhances speech-text alignment, mitigates the modality gap, and consequently improves SLM generalization across diverse datasets.
Abstract:Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
Abstract:Sequential recommender systems have become increasingly important in real-world applications that model user behavior sequences to predict their preferences. However, existing sequential recommendation methods predominantly rely on non-reasoning paradigms, which may limit the model's computational capacity and result in suboptimal recommendation performance. To address these limitations, we present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation that enhances model's representation capabilities through increasing the computation density of parameters by depth-recurrent latent reasoning. Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity, thereby effectively capturing dynamic and intricate user interest patterns. A key difference of LARES lies in refining all input tokens at each implicit reasoning step to improve the computation utilization. To fully unlock the model's reasoning potential, we design a two-phase training strategy: (1) Self-supervised pre-training (SPT) with dual alignment objectives; (2) Reinforcement post-training (RPT). During the first phase, we introduce trajectory-level alignment and step-level alignment objectives, which enable the model to learn recommendation-oriented latent reasoning patterns without requiring supplementary annotated data. The subsequent phase utilizes reinforcement learning (RL) to harness the model's exploratory ability, further refining its reasoning capabilities. Comprehensive experiments on real-world benchmarks demonstrate our framework's superior performance. Notably, LARES exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.